TSTP Solution File: SEV225^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEV225^5 : TPTP v6.1.0. Bugfixed v5.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n105.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:54 EDT 2014

% Result   : Theorem 4.10s
% Output   : Proof 4.10s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEV225^5 : TPTP v6.1.0. Bugfixed v5.3.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n105.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 08:32:56 CDT 2014
% % CPUTime  : 4.10 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1b38368>, <kernel.Type object at 0x1daf6c8>) of role type named r_type
% Using role type
% Declaring r:Type
% FOF formula (<kernel.Constant object at 0x1b38290>, <kernel.Constant object at 0x1b38320>) of role type named c0_type
% Using role type
% Declaring c0:r
% FOF formula (<kernel.Constant object at 0x1b38488>, <kernel.DependentProduct object at 0x1daff38>) of role type named less_type
% Using role type
% Declaring less:(r->(r->Prop))
% FOF formula (<kernel.Constant object at 0x1b38320>, <kernel.Sort object at 0x1843d88>) of role type named cIRREFLEXIVE_LAW_type
% Using role type
% Declaring cIRREFLEXIVE_LAW:Prop
% FOF formula (((eq Prop) cIRREFLEXIVE_LAW) (forall (Xx:r), (((less Xx) Xx)->False))) of role definition named cIRREFLEXIVE_LAW_def
% A new definition: (((eq Prop) cIRREFLEXIVE_LAW) (forall (Xx:r), (((less Xx) Xx)->False)))
% Defined: cIRREFLEXIVE_LAW:=(forall (Xx:r), (((less Xx) Xx)->False))
% FOF formula (cIRREFLEXIVE_LAW->(forall (Xx:r), (((and ((less Xx) c0)) (((eq r) Xx) c0))->False))) of role conjecture named cPARNAS_FIG3_A
% Conjecture to prove = (cIRREFLEXIVE_LAW->(forall (Xx:r), (((and ((less Xx) c0)) (((eq r) Xx) c0))->False))):Prop
% We need to prove ['(cIRREFLEXIVE_LAW->(forall (Xx:r), (((and ((less Xx) c0)) (((eq r) Xx) c0))->False)))']
% Parameter r:Type.
% Parameter c0:r.
% Parameter less:(r->(r->Prop)).
% Definition cIRREFLEXIVE_LAW:=(forall (Xx:r), (((less Xx) Xx)->False)):Prop.
% Trying to prove (cIRREFLEXIVE_LAW->(forall (Xx:r), (((and ((less Xx) c0)) (((eq r) Xx) c0))->False)))
% Found eq_ref00:=(eq_ref0 Xx0):(((eq r) Xx0) Xx0)
% Found (eq_ref0 Xx0) as proof of (((eq r) Xx0) b)
% Found ((eq_ref r) Xx0) as proof of (((eq r) Xx0) b)
% Found ((eq_ref r) Xx0) as proof of (((eq r) Xx0) b)
% Found ((eq_ref r) Xx0) as proof of (((eq r) Xx0) b)
% Found eq_ref00:=(eq_ref0 Xx0):(((eq r) Xx0) Xx0)
% Found (eq_ref0 Xx0) as proof of (((eq r) Xx0) b)
% Found ((eq_ref r) Xx0) as proof of (((eq r) Xx0) b)
% Found ((eq_ref r) Xx0) as proof of (((eq r) Xx0) b)
% Found ((eq_ref r) Xx0) as proof of (((eq r) Xx0) b)
% Found x2:(((eq r) Xx) c0)
% Instantiate: Xx0:=Xx:r;b:=c0:r
% Found x2 as proof of (((eq r) Xx0) b)
% Found x3:(((eq r) Xx) c0)
% Instantiate: Xx0:=Xx:r;b:=c0:r
% Found x3 as proof of (((eq r) Xx0) b)
% Found x2:(((eq r) Xx) c0)
% Instantiate: Xx0:=Xx:r;b:=c0:r
% Found x2 as proof of (((eq r) Xx0) b)
% Found x3:(((eq r) Xx) c0)
% Instantiate: Xx0:=Xx:r;b:=c0:r
% Found x3 as proof of (((eq r) Xx0) b)
% Found eq_ref00:=(eq_ref0 Xx0):(((eq r) Xx0) Xx0)
% Found (eq_ref0 Xx0) as proof of (((eq r) Xx0) b)
% Found ((eq_ref r) Xx0) as proof of (((eq r) Xx0) b)
% Found ((eq_ref r) Xx0) as proof of (((eq r) Xx0) b)
% Found ((eq_ref r) Xx0) as proof of (((eq r) Xx0) b)
% Found x2:(((eq r) Xx) c0)
% Instantiate: Xx0:=Xx:r;b:=c0:r
% Found x2 as proof of (((eq r) Xx0) b)
% Found x200:=(x20 x1):((less c0) b)
% Found (x20 x1) as proof of ((less b) b)
% Found ((x2 (fun (x5:r)=> ((less x5) b))) x1) as proof of ((less b) b)
% Found ((x2 (fun (x5:r)=> ((less x5) b))) x1) as proof of ((less b) b)
% Found ((x2 (fun (x5:r)=> ((less x5) b))) x1) as proof of (P b)
% Found ((eq_sym0000 x2) ((x2 (fun (x5:r)=> ((less x5) b))) x1)) as proof of ((less Xx0) Xx0)
% Found ((eq_sym0000 x2) ((x2 (fun (x5:r)=> ((less x5) b))) x1)) as proof of ((less Xx0) Xx0)
% Found (((fun (x4:(((eq r) Xx0) b))=> ((eq_sym000 x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) b))) x1)) as proof of ((less Xx0) Xx0)
% Found (((fun (x4:(((eq r) Xx0) c0))=> (((eq_sym00 c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1)) as proof of ((less Xx0) Xx0)
% Found (((fun (x4:(((eq r) Xx0) c0))=> ((((eq_sym0 Xx0) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1)) as proof of ((less Xx0) Xx0)
% Found (((fun (x4:(((eq r) Xx0) c0))=> (((((eq_sym r) Xx0) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1)) as proof of ((less Xx0) Xx0)
% Found (((fun (x4:(((eq r) Xx0) c0))=> (((((eq_sym r) Xx0) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1)) as proof of ((less Xx0) Xx0)
% Found (x3 (((fun (x4:(((eq r) Xx0) c0))=> (((((eq_sym r) Xx0) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1))) as proof of False
% Found ((x Xx) (((fun (x4:(((eq r) Xx) c0))=> (((((eq_sym r) Xx) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1))) as proof of False
% Found (fun (x2:(((eq r) Xx) c0))=> ((x Xx) (((fun (x4:(((eq r) Xx) c0))=> (((((eq_sym r) Xx) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1)))) as proof of False
% Found (fun (x1:((less Xx) c0)) (x2:(((eq r) Xx) c0))=> ((x Xx) (((fun (x4:(((eq r) Xx) c0))=> (((((eq_sym r) Xx) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1)))) as proof of ((((eq r) Xx) c0)->False)
% Found (fun (x1:((less Xx) c0)) (x2:(((eq r) Xx) c0))=> ((x Xx) (((fun (x4:(((eq r) Xx) c0))=> (((((eq_sym r) Xx) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1)))) as proof of (((less Xx) c0)->((((eq r) Xx) c0)->False))
% Found (and_rect00 (fun (x1:((less Xx) c0)) (x2:(((eq r) Xx) c0))=> ((x Xx) (((fun (x4:(((eq r) Xx) c0))=> (((((eq_sym r) Xx) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1))))) as proof of False
% Found ((and_rect0 False) (fun (x1:((less Xx) c0)) (x2:(((eq r) Xx) c0))=> ((x Xx) (((fun (x4:(((eq r) Xx) c0))=> (((((eq_sym r) Xx) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1))))) as proof of False
% Found (((fun (P:Type) (x1:(((less Xx) c0)->((((eq r) Xx) c0)->P)))=> (((((and_rect ((less Xx) c0)) (((eq r) Xx) c0)) P) x1) x0)) False) (fun (x1:((less Xx) c0)) (x2:(((eq r) Xx) c0))=> ((x Xx) (((fun (x4:(((eq r) Xx) c0))=> (((((eq_sym r) Xx) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1))))) as proof of False
% Found (fun (x0:((and ((less Xx) c0)) (((eq r) Xx) c0)))=> (((fun (P:Type) (x1:(((less Xx) c0)->((((eq r) Xx) c0)->P)))=> (((((and_rect ((less Xx) c0)) (((eq r) Xx) c0)) P) x1) x0)) False) (fun (x1:((less Xx) c0)) (x2:(((eq r) Xx) c0))=> ((x Xx) (((fun (x4:(((eq r) Xx) c0))=> (((((eq_sym r) Xx) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1)))))) as proof of False
% Found (fun (Xx:r) (x0:((and ((less Xx) c0)) (((eq r) Xx) c0)))=> (((fun (P:Type) (x1:(((less Xx) c0)->((((eq r) Xx) c0)->P)))=> (((((and_rect ((less Xx) c0)) (((eq r) Xx) c0)) P) x1) x0)) False) (fun (x1:((less Xx) c0)) (x2:(((eq r) Xx) c0))=> ((x Xx) (((fun (x4:(((eq r) Xx) c0))=> (((((eq_sym r) Xx) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1)))))) as proof of (((and ((less Xx) c0)) (((eq r) Xx) c0))->False)
% Found (fun (x:cIRREFLEXIVE_LAW) (Xx:r) (x0:((and ((less Xx) c0)) (((eq r) Xx) c0)))=> (((fun (P:Type) (x1:(((less Xx) c0)->((((eq r) Xx) c0)->P)))=> (((((and_rect ((less Xx) c0)) (((eq r) Xx) c0)) P) x1) x0)) False) (fun (x1:((less Xx) c0)) (x2:(((eq r) Xx) c0))=> ((x Xx) (((fun (x4:(((eq r) Xx) c0))=> (((((eq_sym r) Xx) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1)))))) as proof of (forall (Xx:r), (((and ((less Xx) c0)) (((eq r) Xx) c0))->False))
% Found (fun (x:cIRREFLEXIVE_LAW) (Xx:r) (x0:((and ((less Xx) c0)) (((eq r) Xx) c0)))=> (((fun (P:Type) (x1:(((less Xx) c0)->((((eq r) Xx) c0)->P)))=> (((((and_rect ((less Xx) c0)) (((eq r) Xx) c0)) P) x1) x0)) False) (fun (x1:((less Xx) c0)) (x2:(((eq r) Xx) c0))=> ((x Xx) (((fun (x4:(((eq r) Xx) c0))=> (((((eq_sym r) Xx) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1)))))) as proof of (cIRREFLEXIVE_LAW->(forall (Xx:r), (((and ((less Xx) c0)) (((eq r) Xx) c0))->False)))
% Got proof (fun (x:cIRREFLEXIVE_LAW) (Xx:r) (x0:((and ((less Xx) c0)) (((eq r) Xx) c0)))=> (((fun (P:Type) (x1:(((less Xx) c0)->((((eq r) Xx) c0)->P)))=> (((((and_rect ((less Xx) c0)) (((eq r) Xx) c0)) P) x1) x0)) False) (fun (x1:((less Xx) c0)) (x2:(((eq r) Xx) c0))=> ((x Xx) (((fun (x4:(((eq r) Xx) c0))=> (((((eq_sym r) Xx) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1))))))
% Time elapsed = 3.754724s
% node=693 cost=3288.000000 depth=22
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:cIRREFLEXIVE_LAW) (Xx:r) (x0:((and ((less Xx) c0)) (((eq r) Xx) c0)))=> (((fun (P:Type) (x1:(((less Xx) c0)->((((eq r) Xx) c0)->P)))=> (((((and_rect ((less Xx) c0)) (((eq r) Xx) c0)) P) x1) x0)) False) (fun (x1:((less Xx) c0)) (x2:(((eq r) Xx) c0))=> ((x Xx) (((fun (x4:(((eq r) Xx) c0))=> (((((eq_sym r) Xx) c0) x4) (fun (x6:r)=> ((less x6) x6)))) x2) ((x2 (fun (x5:r)=> ((less x5) c0))) x1))))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------